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Abstract
Isotope-labeling-based mass spectrometry (MS) is widely used in quantitative proteomic studies. With this technique,
the relative abundance of thousands of proteins can be efficiently profiled in parallel, greatly facilitating the detection
of proteins differentially expressed across samples. However, this task remains computationally challenging. Here we
present a new approach, termed Model-based Analysis of Proteomic data (MAP), for this task. Unlike many existing
methods, MAP does not require technical replicates to model technical and systematic errors, and instead utilizes a
novel step-by-step regression analysis to directly assess the significance of observed protein abundance changes. We
applied MAP to compare the proteomic profiles of undifferentiated and differentiated mouse embryonic stem cells
(mESCs), and found it has superior performance compared with existing tools in detecting proteins differentially
expressed during mESC differentiation. A web-based application of MAP is provided for online data processing at
http://bioinfo.sibs.ac.cn/shaolab/MAP.

Introduction
Over the past two decades, mass spectrometry (MS) has

become one of the most powerful tools to quantify protein
abundance in biological samples, providing a routine way
to analyze protein expression levels and posttranslational
modifications1–4. Driven by the increasing demand to
comprehensively assess protein expression changes across
different biological contexts, many MS-based techniques
have been developed for relative quantification of protein
abundance1,5–10. Among them, protein quantification
based on stable isotope labeling plays an important role in
proteomic studies, largely due to the high accuracy and

efficiency5,8,9. Most of the isotope labeling-based methods
are achieved by introducing different stable isotope
labeling into proteins/peptides of different biological
samples through metabolic (stable isotope labeling by
amino acids in cell culture (SILAC), stable isotope label-
ing of mammals (SILAM), etc.) or chemical progresses
(iTRAQ (isobaric tag for relative and absolute quantita-
tion (iTRAQ)), tandem mass tag (TMT), isotope-coded
affinity tag (ICAT), etc.), to create specific mass tags,
which can be distinguished by high-resolution MS
instruments1,6–8.
Using the isotope-labeling technique, the relative

expression levels of thousands of proteins across multiple
samples can be efficiently quantified in a single MS
experiment7,8,11. Then, an important task is to accurately
identify proteins with significant expression changes
between these samples12–14. However, the success of this
analysis heavily relies on fathoming the technical varia-
bility of experiments. Although great progress has been
made by isobaric-labeling technique, it still suffers from
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the “ratio compression” nature13,15. In these experiments,
the measured ratios of protein/peptide abundance levels
across samples are usually underestimated15,16. Several
approaches have been proposed to solve this problem
either by MS/MS/MS (MS3) or gas-phase cleanup stra-
tegies17,18. However, these strategies cannot be easily
implemented in regular instruments and can eventually
affect the sensitivity19,20. Another possible solution is to
build statistical models that can accurately estimate the
contribution of technical variations to the ratio observed
for each peptide/protein21. With these models, even
though the measured ratios may be compromised, it is
still possible to distinguish true biological differences
from technical variations produced by conventional liquid
chromatography MS/MS experiments and reliably detect
proteins with significant abundance changes22,23. Fol-
lowing this direction, a number of statistical models have
been developed10,11,14,24,25. These models typically require
either prior knowledge or separate experiments to assess
the noise level of isobaric experiments10,11,14,24. For
example, Zhang et al.11 utilized technical replicates of the
same sample, between which no meaningful biological
differences should be expected, to model the technical
and systematic errors of iTRAQ experiments, and the
obtained model was then used as a reference to perform
cross-sample comparison. However, instrumental varia-
tions may not be negligible among different experi-
ments26,27. Thus, a more direct and intuitive approach
without borrowing information from additional technical
replicates could greatly facilitate researchers to perform
differential expression analysis with their own
proteomic data.
Here we present a new computational model, termed

Model-based Analysis of Proteomic data (MAP), for this
purpose. MAP is designed to statistically compare pro-
teomic profiles generated from different biological sam-
ples and directly identify proteins with significant
abundance changes. It considers all detected proteins as a
mixture of differentially and non-differentially expressed
ones, and chooses only those with low-intensity changes
between two profiles to model the contribution of tech-
nical and systematic errors as a function of protein
intensity levels. As the key feature of MAP, a novel step-
by-step regression analysis is applied to the selected
proteins, which first builds local approximations of the
error function and then combines them to fit the global
error function. Finally, the error function is used as a
reference to estimate the significance of the intensity
change observed for each protein.
To validate the effectiveness of this approach, we used

DEEP-SEQ MS technique28 to extensively perform
quantitative proteomic profiling of both undifferentiated
and differentiated mouse embryonic stem cells (mESCs),
and applied MAP to analyze the protein expression

changes during mESC differentiation. As a side-by-side
comparison, two existing tools including the method
presented in Zhang et al.11 and MaxQuant25, another
widely used tool in proteomic studies, were applied to the
same dataset. By comparing with a set of published
ribosome profiling data of undifferentiated and differ-
entiated mESCs, we provide evidence that our new
approach clearly outperformed the existing tools in
detecting the differentially expressed proteins (DEPs). In
addition, a web-based application of MAP is provided to
facilitate its use by the community (http://bioinfo.sibs.ac.
cn/shaolab/MAP).

Results
Workflow of MAP
Figure 1 shows the workflow of MAP, which comprises

four main steps. First, it takes two quantitative proteomic
profiles generated in the same MS run as input, in which
the MS intensities have been assigned to proteins, to
represent their relative abundance in each sample. Next,
the protein intensities are normalized to make them
comparable and the ratio of normalized protein intensities
between two profiles is calculated for each protein. Sub-
sequently, in the model building step, a step-by-step
regression analysis is applied to the ratios of protein
intensities to globally estimate the contribution of tech-
nical and systematic errors as a function of protein
intensities. Finally, a P-value is calculated for each
detected protein based on the estimated error function to
represent the significance of its abundance change.
To illustrate the performance of MAP, we applied it to

compare the proteomic profiles of undifferentiated and
differentiated mESCs and detect genes differentially
expressed at protein level during mESC differentiation.
The proteomics profiling experiments are performed with
undifferentiated and differentiated mESCs upon leukemia
inhibitory factor (LIF) withdrawal using DEEP-SEQ MS
technique28. The iTRAQ-based quantitative proteomics
experiments were performed three times as biological
replicates, which were profiled by three separate MS runs.
In general, around 9500 expressed proteins were quanti-
fied in each run and most of these identified proteins can
be found in multiple runs (Supplementary Fig. S1a and
Table S1), indicating a favorable reproducibility between
different replicates.
We started MAP with comparing two proteomic pro-

files of undifferentiated and differentiated mESCs gener-
ated in the first run. First, the protein intensities in two
profiles were normalized to make them comparable and
then the log2 ratio of normalized protein intensities
between two profiles was calculated for each protein
(Materials and Methods, Supplementary Note 1). To test
whether the intensity change observed for each protein is
of statistical significance, in MAP we introduced a
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Fig. 1 Workflow of MAP. MAP takes two quantitative proteomic profiles generated in the same MS run as input (step 1). After global normalization
of MS intensities (step 2), a step-by-step regression analysis is applied to model the contribution of technical and systematic errors to the intensity
changes observed (step 3), and the obtained error model is then applied to every detected protein as a reference to infer the significance of its
intensity change (step 4)
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hypothesis frequently used in differential analysis of pro-
teomic data, in which the contribution of technical and
systematic errors to the log2 ratio of protein intensities is
assumed to follow a zero-centered normal distribution N
(0, σ2)11,21,25. Here, the variance σ2 is thought to be a
function of the intensity level of each protein11,25. In
previous studies, this variance function was usually
inferred from comparison of technical replicates, which
could then be applied to cross-sample comparisons to test
whether the observed intensity changes could be
explained by technical and systematic errors11. To directly
build variance function from the two proteomic profiles
being compared, in MAP we introduced a novel step-by-
step regression analysis. In this analysis, a traditional MA
plot was first generated29, in which the log2 ratios of
protein intensities of all detected proteins were plotted
against their mean log2 intensities between two profiles,
and then the MA plot was scanned with a sliding window
from left to right (left panel of Fig. 2a). As the proteins
falling in this window have similar intensity levels, the
local variance function for these proteins could be
approximated by a constant. It is important to note that,
when the two profiles being compared are not replicates,
these proteins should be considered as a mixture of DEPs
and non-DEPs. To infer the local variance function from
the non-DEPs in the mixture, the log2 ratios of all proteins
in this window were ordered by their values and then
plotted against the corresponding theoretical quantiles of
standard normal distribution N(0, 1). In this way, it can be
seen that the ordered log2 ratios located in the middle,
which could be assumed to be mainly associated with
non-DEPs, exhibited a strong linear relationship with the
corresponding theoretical quantiles (right panel of Fig. 2a).
Then, an ordinary least-square linear regression analysis
was applied between the middle W (the default value for
this parameter is W= 50%) of the ordered log2 ratios and
the corresponding theoretical quantiles, and a liner model
with coefficient of determination R2= 0.992 was derived
(right panel of Fig. 2a). This finding indicates that the log2
ratios selected for model fitting are predominantly con-
tributed by technical and systematic errors and thus could
be thought to be drawn from approximately the same
normal distribution, of which the mean and variance
could be directly obtained from the parameters of the
fitted linear model (see Materials and Methods). The
variance of this normal distribution can be taken as a local
approximation of the global variance function for proteins
covered by this window.
To derive the global variance function, the sliding

window was moved in a stepwise manner from left to
right. In this way, the whole MA plot was covered by a
series of windows. At the meantime, the same linear
regression analysis was repeatedly applied to each win-
dow, to estimate the local variance parameter.

Remarkably, the coefficient of determination R2 was
found to be higher than 0.99 for all linear regressions
(Supplementary Fig. S2a), strongly supporting the validity
of our approach. Next, the variance of the normal dis-
tribution estimated by the linear regression applied to
each window was plotted against the mean log2 protein
intensity averaged over proteins falling in this window and
an exponential function was fitted between the variance
and the mean with coefficient of determination R2= 0.989
(Fig. 2b). This exponential function is exactly the global
variance function we want to infer for the two profiles
under comparison. Finally, a two-tailed P-value was cal-
culated for each protein to describe the significance of its
intensity change, which was defined as the probability of
observing an equal or greater value from normal dis-
tribution N(0, σ2) compared with the absolute value of its
log2 ratio (Fig. 2c). Here, the variance σ2 was calculated by
putting the mean log2 intensity of this protein between
two profiles into the global variance function (see Mate-
rials and Methods).
Furthermore, an additional analysis was carried out in

MAP to summarize the local linear regressions. In this
analysis, the ordered log2 ratios in each window were
rescaled by the square root of the variance parameter
estimated for this window. Then, the mean and SD of the
rescaled log2 ratios across all windows were plotted
according to their order against the corresponding theo-
retical quantiles of standard normal distribution (Fig. 2d).
This plot in turn could be used to inspect whether the
parameter W needs to be further adjusted. After rescaling,
the middle 50% of the ordered log2 ratios were found to
match with the line y= x very well. Meanwhile, the log2
ratios close to boundaries obviously deviated from line y=
x, which suggests a considerable fraction of them are
associated with DEPs. Thus, they should not be included in
inferring the local and global variance function. To validate
our hypothesis, we also applied MAP to compare the two
technical replicates generated in the first run. In this
comparison, the observed protein intensity changes should
be contributed by technical and systematic errors. Con-
sistently, we observed that almost all the rescaled log2
ratios, even for those not involved in model fitting, could be
closely approximated by the line y= x, except the most
extreme ones that might be severely affected by some
outlier values (Fig. 2e). Moreover, we repeated this analysis
with the proteomic data generated in other runs and got
largely similar results (Supplementary Fig. S2b, c). These
findings provide a strong support to our hypothesis that the
variance function inferred from proteins with low-intensity
changes can be extrapolated to all detected proteins as a
reference to test whether their intensity changes could be
explained by technical and systematic errors.
Inspired by these findings, in MAP we additionally

defined a Z-statistic for each protein (Fig. 1), which is
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calculated as the log2 ratio of its intensities divided by the
square root of the variance σ2 estimated for it from the
global error function. By this means, the contribution of

technical errors to each protein’s Z-statistic could be
assumed to follow the standard normal distribution,
independent of its intensity level. Consequently, we found

Fig. 2 (See legend on next page.)
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the Z-statistics of proteins showed a much higher corre-
lation across different runs than the original log2 ratios of
protein intensities (Supplementary Fig. S2d, e), suggesting
they are more comparable with each other and can pro-
vide a better basis for integrating the protein expression
changes observed in different runs (Supplementary Note
2).

Comparison of MAP with existing methods
MAP directly uses the two proteomic profiles under

comparison to model the impact of technical and sys-
tematic errors, as represented by the global variance
function, and identifies proteins with significant abun-
dance changes based on it. In contrast, many existing
methods require additional technical replicates to build
reference error model10,11,14,30. We took the global var-
iance functions obtained by applying MAP to directly
compare the proteomic profiles of differentiated and
undifferentiated mESCs, and compared them with the
variance functions derived from parallel technical repli-
cates generated in the same MS run by using the method
described in Zhang et al.11. Interestingly, the variance
functions obtained by these two methods showed con-
siderable difference (Fig. 3a and Supplementary Fig. S3a-b).
Therefore, it is necessary to assess which method could
provide a more reliable estimation of the statistical sig-
nificance of observed protein abundance changes. More-
over, we included another commonly used tool,
MaxQuant25, which also can directly perform statistical
comparison between different proteomic profiles. Max-
Quant does not model the impact of technical errors as a
function of protein intensities, but simply uses the 15.87,
50, and 84.13th percentiles of the global and local dis-
tribution of protein ratios to detect proteins with sig-
nificant outlier ratios25.
We applied all three methods to the proteomic data of

differentiated and undifferentiated mESCs generated in
each run, and selected the same number of top DEPs for
each method based on the P-values calculated by it. Then,

we used the published ribosome profiling data of differ-
entiated and undifferentiated mESCs as a reference31 to
evaluate the reliability of the DEPs detected by each
methods. For each set of DEPs, we compared their
abundance changes with the mRNA translation changes
of the corresponding genes obtained from ribosome
profiling data and defined the consistency score of this set
of proteins as the fraction of them exhibiting consistent
changes in terms of direction (see Materials and Meth-
ods). In this way, the top 500 DEPs detected by MAP were
found to have an obviously higher consistency score than
those identified by the other two methods for all three
runs (Fig. 3b). Moreover, we assigned each protein with
the most significant P-value of all three runs and then
selected the top 500, 1000, and 1500 DEPs for each
method. Again, the DEPs detected by MAP achieved the
highest consistency score (Fig. 3c).
In addition, we conducted an analysis using benchmark

DEPs between undifferentiated and differentiated mESCs
defined from the proteomic data under comparison to
further assess the performance of three different methods,
and found MAP showed a better sensitivity and specificity
in recovering the benchmark DEPs from the comparison
of proteomic profiles generated in each single run than
the other two methods (Fig. 3d and Supplementary Fig.
S4a–c, and Note 4). Taken together, these results suggest
MAP not only can increase the efficiency of quantitative
proteomic study but also has improved performance in
detecting proteins with significant abundance changes.

Web-based application of MAP
We provide a web-based application of MAP (http://

bioinfo.sibs.ac.cn/shaolab/MAP) to facilitate its use by
researchers with no programming experience. Moreover,
in many studies the proteomic profiling experiments were
performed for multiple times as biological replicates,
which can increase both the coverage of proteomic data
and also the reproducibility of the results28,32. Our web-
based application of MAP allows users to perform a two-

(see figure on previous page)
Fig. 2 Using MAP to compare the proteomic profiles of undifferentiated and differentiated mESCs. a A traditional MA plot to show the
comparison of the proteomic profiles of undifferentiated and differentiated mESCs generated in the first run (left panel). Here x axis is the mean log2
intensity of each protein between two profiles (A-value) and y axis is the log2 ratio of protein intensities (M-value). A sliding window of size 400 was
used to scan the plot with a step size of 100. At each step, all the log2 ratios covered by the window were ordered by their values and then plotted
against the corresponding theoretical quantiles of standard normal distribution (right panel). The contribution of technical and systematic errors to
these log2 ratios is assumed to follow approximately the same zero-centered normal distribution N(0, σ2). Next, standard least-square linear regression
was applied to the middle 50% of the ordered log2 ratios, which were assumed to be predominantly associated with non-differentially expressed
proteins, against the corresponding theoretical quantiles to derive a linear model, and the slope of this linear model was taken as an estimation of
the parameter σ of the normal distribution for this window (right panel). Here, R2 is the coefficient of determination of linear regression. b The
exponential function fitted between the variance σ2 estimated for each window and the average log2 intensities of proteins falling in this window. c
The MA plot shown in a with color coding to indicate the P-value of each protein’s intensity change. d Plot of the ordered log2 ratios, which were
rescaled by the σ estimated for each window and then averaged across all windows, against the corresponding theoretical quantiles of standard
normal distribution. Error bars represent the SD from the mean. e The same plot as d, but here MAP was used to compare the two technical
replicates generated in the first run
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step differential analysis on their own proteomic data with
multiple replicates, which may be generated in different
MS runs (Fig. 4a). At the first step, they can use the MAP
module to compare the proteomic profiles generated in
each run separately. Then, the output statistics of all
replicates can be combined at the integration module to
finally determine the DEPs. Here, two alternative
approaches are provided for data integration. We first
borrowed the concept of the second best rule frequently
used for high-throughput short hairpin RNA (shRNA)
screening33–36. In those studies, typically, multiple
shRNAs were designed for each single gene and the
candidate genes were ranked by the second best score of
the shRNAs against each gene to increase the confidence

of ranking. Besides, some users may also be interested in
the overall expression changes across replicates, e.g., when
the proteomic profiling experiments are performed with
patient samples or the number of replicates is large37,38.
Inspired by the Stouffer’s Z-test39, the integration module
additionally calculates the average Z-statistic of each
protein over all replicates as well as the corresponding P-
value based on the standard normal distribution (see
Materials and Methods), providing another way to sum-
marize the protein expression changes detected (Fig. 4a).
To test the performance of these methods on proteomic

data integration, we repeatedly used MAP to compare the
proteomic profiles of undifferentiated and differentiated
mESCs generated in each run, and then ranked all detected

Fig. 3 Performance comparison of MAP and two existing methods in detecting proteins differentially expressed during mESC
differentiation. a The global variance function obtained by using MAP to compare the proteomic profiles of undifferentiated and differentiated
mESCs generated in the first run (solid line), as well as that got by applying the method proposed in Zhang et al.11 on the two technical replicates
generated in the same run (dashed line). b The consistency score of the top 500 differentially expressed proteins between undifferentiated and
differentiated mESCs detected by MAP, the method proposed in Zhang et al.11 as well as MaxQuant from each of the three MS runs. Here the
consistency score was defined as the fraction of proteins whose abundance changes are consistent with the translation changes of the
corresponding mRNA transcripts detected from ribosome profiling data in terms of direction. c The consistency score of the top 500, 1000, and 1500
differentially expressed proteins between undifferentiated and differentiated mESCs detected by MAP, the method presented in Zhang et al.11 as well
as MaxQuant from all three runs. Here, the top differentially expressed proteins were selected based on the most significant P-value of each protein
among all three runs. d The receiver operating characteristic (ROC) curves of using the P-values derived by different methods in each single run to
distinguish the benchmark differentially expressed proteins (DEPs) from other proteins and the area under each ROC curve (AUC) was also calculated
to indicate the performance of each method
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Fig. 4 Using MAP to handle proteomic data with biological replicates. a Workflow of using the web application of MAP to compare proteomic
data with multiple biological replicates generated in different MS runs. b The consistency score of the top differentially expressed proteins between
undifferentiated and differentiated mESCs identified by MAP. Here, proteins were ranked by the best P-value (blue solid line), the second best P-value
(red solid line), and the average Z-statistic (green solid line) among all three runs, as well as by the P-value of each run, respectively (dashed lines).
c False discovery rate (FDR) estimated for the second best P-value of each protein using the permutation-based approach were plotted against that
estimated from the comparisons of technical replicates for this second best P-value. Here, FDRs associated with the benchmark DEPs defined
previously were explicitly indicated
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proteins by the best and the second best P-value, as well as
the average Z-statistic of each protein over all three runs. By
this analysis, we observed that the top DEPs selected based
on the second best P-value and average Z-statistic have
clearly better consistency scores than those selected by the
best P-value of three runs, and are also better than those
identified in any single run (Fig. 4b). This analysis again
highlights the importance of having biological replicates for
quantitative proteomic studies. Moreover, inspired by the
analysis presented in two previous studies40,41, we devel-
oped a permutation-based approach to estimate the false
discovery rate (FDR) for the second best P-value and the
average Z-statistic of each protein (Supplementary Note 5
and Fig. S5a–c), which represents the estimated type-I error
rate for the DEPs defined by using each of them as cutoff,
and provided in the integration module. As the result, we
found FDRs estimated by the permutation-based method
agreed well with those estimated from technical replicates
(Fig. 4c and Supplementary Fig. S5d), indicating the validity
of this approach.

Conclusion and discussion
In this work, we present a new computational tool,

MAP, to statistically compare proteomic data generated
using isotope-labeling-based MS technique and evaluate
the significance of the abundance change detected for
each protein. Unlike many existing methods for this
purpose, MAP does not rely on technical replicates to
model technical and systematic errors and, instead,
directly builds error model from the proteomic profiles
under comparison using a step-by-step regression analy-
sis. This improvement can increase the efficiency of MS
experiments. Moreover, considerable differences between
the error models built by two different classes of
approaches are still noted, even though technical repli-
cates generated in the same MS run were used for model
fitting. Therefore, we applied MAP and two existing tools
to compare the proteomic profiles of undifferentiated and
differentiated mESCs, and found that the protein
expression changes detected by MAP exhibited a clearly
better consistency with the changes of mRNA translation
detected from corresponding ribosome profiling data,
indicating a favorable performance of our new approach.
As a natural extension of MAP model, we found that, by
using the sample variance of each protein’s log2 intensities
and the χ2-distribution to replace the log2 ratio of protein
intensities and the standard normal distribution used in
the step-by-step regression procedure of MAP, respec-
tively, a new statistical framework can be derived for
simultaneously comparing multiple proteomic profiles
generated in the same MS run and identifying proteins
differentially expressed across them (Supplementary Fig.
S6a–f, Table S2, and Note 6).

Furthermore, it will be important to note the high
consistency observed between the protein expression
changes and the mRNA translation changes during mESC
differentiation. This finding provides a new insight into
posttranscriptional regulation of gene expressions. For
example, close to 85% of the top 500 DEPs detected by
MAP showed parallel changes of mRNA translation, and
this fraction for the top 1500 DEPs is still higher than 75%
(Fig. 4b). Given the fact that these proteins typically are
highly abundant in the samples being compared (Fig. 2c),
it is reasonable to speculate that a large fraction of the
posttranscriptional regulation of gene expressions, espe-
cially for those highly expressed genes, may be mediated
by RNA sequence signatures, which can also be supported
by the findings of many recent studies42–44. Thus, a sys-
tematic and integrative analysis of proteomic, tran-
scriptomic, and ribosome profiling data can provide
critical information about the mechanism of post-
transcriptional regulation of gene expression.

Materials and methods
Cell culture and proteomic sample preparation
The J1 mESCs were lysed in the SDS solution (50 mM

Tris-HCl, pH 7.5, 5% SDS, 100mM DTT, 5 mM EDTA).
After boiling in water for 20 min, the extracted proteins
were precipitated by adding six volumes of cold (−20 °C)
acetone and resolubilized in a digestion buffer containing
8M urea and 0.1M NH4HCO3. Dithiothreitol (DTT) was
added to a final concentration of 100 mM and incubated
for 30 min at 37 °C, and then 20mM iodoacetamide was
added and incubated in the dark at room temperature for
30min; excess iodoacetamide was quenched by addition
of DTT to a final concentration of 20 mM. The proteins
were then diluted to a final urea concentration of 1M
urea with 0.1M ammonium bicarbonate. Trypsin diges-
tion was performed at 37 °C overnight with end-over-end
rotation. The digested peptide solution was acidified with
1% trifluoroacetic acid (TFA) and desalted on a C18 solid-
phase extraction cartridge 96-well plates. Eluted peptides
were lyophilized by vacuum centrifugation andstored at
−80 °C in 400 µg aliquots.
To compare the proteome of undifferentiated and dif-

ferentiated mESCs, peptides from the mESCs incubated
without LIF for 48 h were labeled as two technical repli-
cates with iTRAQ 116 and 117. The peptides from the
undifferentiated mESCs incubated with LIF were labeled
as technical replicates with iTRAQ 114 and 115. For each
reaction, peptides were solubilized in 500mM triethy-
lammonium bicarbonate and mixed with the iTRAQ
reagent in ethanol. Labeling was performed at room
temperature for 1 h and samples were then combined.
Fresh aliquots of mESC were processed as described
above, to provide biological triplicates.
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The protein quantification was performed with a DEEP-
SEQ platform described previously28. Briefly, the iTRAQ-
labeled peptides was solubilized in the running buffer
(10mM ammonium formate at pH 10) and loaded onto
the first dimension column packed with C18 (high pH RP)
resin. The peptides were fractionated and then loaded
onto the second dimension column packed with strong
anion exchange (SAX) resin. Afterward, the fractionated
peptides were further separated in SAX column and finally
processed in a 25 μm I.D. column, and introduced into a
Triple-TOF 5600 mass spectrometer (Sciex Framingham,
MA). The 5600 mass spectrometer was operated in data-
dependent mode, with the top 50 precursors (charge state
+2 to+5, >100 counts) in each MS scan (800ms, scan
range 350–1400m/z) subjected to MS/MS (minimum
time 140ms, scan range 100–1400m/z). A dynamic
exclusion window of 40 s was used with unit resolution for
precursor isolation. Electrospray voltage was set to 2.4 kV.
The result wiff files were processed with proteinpilot v4.5
(sciex) to search against human database downloaded
from uniprot. All peptide spectral matches (PSMs) from
three biological replicates were combined for the FDR
assessment. Only those peptides with scores at or above a
PSM FDR threshold of 1% were further considered.

Normalization of protein intensities
In this study, the iTRAQ intensities of peptides repre-

senting their relative abundance have already been sum-
marized to protein level before sending to MAP for
comparison. Before carrying out differential protein
expression analysis between undifferentiated and differ-
entiated mESCs, protein intensities from channel 114 and
115 in each run were added together to generate the
proteomic profile of undifferentiated mESCs, and those
from channel 116 and 117 were combined as the pro-
teomic profile of differentiated mESCs (Supplementary
Note 3 and Fig. S2f). For each profile, the outlier proteins
are identified as those with intensities higher than Q3+ L
* (Q3−Q1), where Q1 and Q3 are the 25th and 75th per-
centiles (i.e., the lower and upper quartiles) of the protein
intensities in this profile, respectively, and L= 1.5 is used
in this study. Then, the trimmed total intensity of each
profile is calculated as the sum of protein intensities over
proteins that are not identified as outliers in the profiles
under comparison. Finally, protein intensities in each
profile are divided by the corresponding normalization
factor, which is calculated as the trimmed total intensity
of this profile divided by the average trimmed total
intensity of the profiles being compared. An evaluation of
the normalization of protein intensities based on trimmed
total intensities can be found in Supplementary Note 1,
Fig. S1b, c, and Fig. S3c, d.

Calculation of P-value to characterize the significance of
each protein’s intensity change
For protein i, its average intensity between the two

profiles being compared is calculated as

Ai ¼ 1
2

log2Si1 þ log2Si2ð Þ;

where Si1 and Si2 are the intensity of this protein in the
first and second profile, respectively, and the log2 ratio of
its protein intensities is calculated as

Mi ¼ log2
Si1
Si2

� �

In MAP, the contribution of technical and systematic
errors to Mi is assumed to follow a zero-centered normal
distribution N(0, σi

2) and σi
2 is modeled as a function of

Ai. To directly infer this variance function from the pro-
files being compared, the log2 ratios of all detected pro-
teins are plotted against their average intensities to
generate a traditional M–A plot and the M–A plot is then
scanned by a sliding window of size N proteins moving
from left to right (N= 400 and step size= 100 here). In
this way, the whole plot is covered by a series of windows,
which are used to first build local estimations of the global
variance function. Here, MAP introduces an assumption
that proteins falling in each window have similar intensity
levels and thus the contribution of technical and sys-
tematic errors in the log2 ratios falling in each window can
be assumed to follow approximately the same normal
distribution N(0, σ2). To estimate the variance parameter
σ2 for each window, all the log2 ratios covered by this
window are ordered by their values and then plotted
against the corresponding theoretical quantiles of stan-
dard normal distribution. Here, the plotting position p̂i
(i.e., the choice of theoretical quantile) associated with the
i-th log2 ratio is calculated based on the formula proposed
by Michael and Schucany in 198645 for censored data

p̂i ¼ N � aþ 1
N � 2aþ 1

Y
j�Ω;j�i

j� a
j� aþ 1

(here Ω is the set of data points involved in the corre-
sponding analysis, which, e.g., is defined as the log2 ratios
in the middle selected for linear regression), and then the
corresponding theoretical quantile of standard normal
distribution q̂i ¼ Φ�1 p̂ið Þ can be derived from the reverse
function of

p̂i ¼ Φ q̂ið Þ ¼
Z q̂i

�1

1ffiffiffiffiffiffi
2π

p � e�x2=2dx

Next, an ordinary least-square linear regression is
applied to the middle W (W= 50% by default) of the
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ordered log2 ratios in each window against the corre-
sponding theoretical quantiles to derive a linear model

M ¼ μþ σ � q̂;
and the square of the slope σ is used to as an estimation

of the variance σ2 for this window. When the sliding
window finishes scanning the MA plot, nonlinear least-
square regression is applied to fit a two-parameter expo-
nential function between the variance σ2 estimated for
each window and the average protein intensity A over the
proteins selected for linear regression in this window as

σ2 ¼ Ψ θ;Að Þ ¼ exp θ1 þ θ2 � Að Þ
This exponential function is the global variance func-

tion for the two profiles being compared. Finally, a two-
tailed P-value is calculated for each protein to represent
the significance of its intensity change, as the probability
of observing an equal or greater value than the absolute
value of its log2 ratio Ai from normal distribution
N 0; σ2

i ¼ Ψ θ;Aið Þ� �
using formula

Pi ¼ 2 �
Z þ1

jMij

1ffiffiffiffiffiffiffiffiffiffi
2σ iπ

p � e�x2=ð2σ2i Þdx;

which will be further adjusted for multiple testing using
the Benjamini–Hochberg approach.
In addition, the mean value of the log2 ratios falling in

each window, as estimated by μ of the linear model
derived from regression, often fluctuates slightly around
zero. This observation could be explained by the local bias
of global protein intensity normalization and it is extre-
mely hard to be completely removed. MAP provides user
with an option to calculate the P-values in a more strin-
gent way. In this option, MAP considers the contribution
of local bias of normalization to the log2 ratio observed for
each protein by adding a constant term σ2

μ to the variance
of the reference normal distribution Nð0; σ2

i Þ used for P-
value calculation as σ2

i ¼ Ψ θ;Aið Þ þ σ2
μ, in which σ2

μ is the
variance of parameter μ across all windows.

Definition of the Z-statistic of each protein’s intensity
change
In the comparison of two proteomic profiles using

MAP, the Z-statistic of protein i is defined as

Zi ¼ Mi

σ i
:

Furthermore, the average Z-statistic of protein i across
multiple comparisons is defined as

Ẑi ¼
Pk

t¼1 Z
t
iffiffiffi

k
p ;

and here k is the number of comparisons in which
protein i is detected in the proteomic profiles being
compared. Next, a two-tailed P-value is calculated for the

average Z-statistic of this protein based on standard
normal distribution

P ¼ 2 �
Z þ1

jẐij

1ffiffiffiffiffiffi
2π

p � e�x2=2dx;

which will also be adjusted using the
Benjamini–Hochberg approach for multiple testing.

Integration with ribosome profiling data
The translation changes of mouse genes during mESC

differentiation after LIF withdrawal based on ribosome
profiling experiments were directly downloaded from
Ingolia et al.31. Only genes with log2 ratios of translation
lower than −0.2 or higher than 0.2 were retained. In this
way, 2709/3192 genes with increased/decreased mRNA
translation during mESC differentiation were used for the
following analysis, respectively. Next, the consistency
score of each set of DEPs is defined as

Consistency score ¼ #Consistent DEPs
#Consistent DEPsþ#Inconsistent DEPs

Here, the consistent DEPs are defined as DEPs whose
direction of abundance changes is consistent with the
direction of translation changes of corresponding genes,
and inconsistent DEPs are defined as those showing
opposite changes in terms of direction.
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